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Abstract

We considercombinatorialproblemsassociatedwith contractsatisfactionandmarketclearingarising
in deregulatedelectricalpower industry. A prototypicalproblemin this context canbestatedasfollows:
Givena network � anda (multi-)setof pairsof verticesin it denotingbilateralcontracts,find themaxi-
mumnumberof simultaneouslysatisfiablecontracts.Theextensionof theaboveproblemto Poolco-type
contractsatisfactionproblemsis considered.Suchproblemsalsoarisein real-timeInternetservices(e.g.,
telephone,fax,video).

We show that theseproblemscomein a few variants,someefficiently solvableandmany NP-hard;
we also presentapproximationalgorithmsfor many of the NP-hard variantspresented.Someof our
approximationalgorithmsbenefitfrom certainimprovedtail estimatesthatwe derive; thelatteralsoyield
improvedapproximationsfor a family of packingintegerprograms.

Key words and phrases: Combinatorialoptimization,productionandtransmissionof power, regulationof
electricpower industry, approximationalgorithms,splittableflow, routingalgorithms.

1 Intr oduction

The U.S. electric utility industry is in the early stagesof major structuralchangesdriven by the move to
deregulatethe industry[7, 17, 19, 20, 47]. A major consequenceof deregulationis that consumersaswell
asproducerswill eventuallybe able to negotiatepricesto buy andsell electricity. Seethe comprehensive
discussionsin [45, 46, 19, 47] for moredetailson this topic. Beforeformally definingtheproblems,we view
thesettinginformally for now asa collectionof requestpairs(contracts) in a flow network whereintheflow
for any paircanbesplit into multiplepaths. In practice,deregulationis complicatedby thefactthatall power
companieswill have to sharethe samepower network in the shortterm, with the network’s capacitybeing
�
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just aboutsufficient to meetcurrentdemands.Underderegulation,mostU.S.statesareplanningto setup an
independentsystemoperator(ISO),agoverningbodyto arbitratetheuseof thenetwork. Thebasicquestions
facingtheISOswill behow to decidewhich contractsto deny/accept(dueto capacityconstraints),andwho
is to bearthe costsinvolved in suchdenials. Suchmarket-clearingmechanismswill play a crucial role if
the deregulatedpower market wereto eventuallybecomeeconomicallyefficient: i.e., pricesarefair andno
individual or a groupof consumers/supplierscanexecutemarket power. Severalcriteria/policieshave been
proposedand/orarebeinglegislatedby thestatesaspossibleguidelinesfor theISO for finding the“best” set
of feasiblecontracts[45]. Theseinclude:

Last in, First Out: In this plan,all contractsareregisteredwith theISO in theorderthey arereceived. Any
contractthat resultsin an infeasibility of the resultingsolution is denied. As arguedcomprehensively by
Wildberger [45], sucha policy typically favorsforwardcontracts;althoughin somecasesit favorsproducers
who optedfor spotprices.

Minimum Flow denied: Underthis proposal,theISO considersall contractssimultaneouslyandselectsthe
combinationthatdeniesthe leastamountof proposedpowerflow.

Minimum Total Cost: Similar to Minimum Flow denied except that the highestpricedcontractswill be
eliminatedor adjusteddown first. Thisplanattemptsto benefittheconsumersby minimizing their cost.

Maximum Total Cost: Similar to Minimum Flow deniedbut retainthecontractswith maximumtotal cost.
This is beingadvocatedby legislaturesin view of theanticipatedtax revenues.It is likely to benefitpower
producersandalsoownersof thetransmissionsystembut couldbedisadvantageousto consumers.

The above discussionandour experiencein combinatorialoptimizationsuggeststhat the following im-
portantadditionalparameterswill comeinto play asa resultof deregulation: (i) theunderlyingnetwork, (ii)
its capacityandtopologyand(iii) thespatiallocationsof thebilateral/Poolcocontractson thisnetwork. (The
Poolcomodelis definedin Section6.1.)

This paperinvestigatesthecomputationalcomplexity of executingsomeof theabove-statedpoliciesby
theISO in theeventtheexistingsetof contractsresultin aninfeasiblesituationfor thetransmissionnetwork.
The importantgoalsof this work include: (i) providing a quantitative justificationfor selectingonepolicy
over another(solely on the basisof computationalcomplexity), (ii) demonstratingthat the above parame-
terscrucially affect theway power is routedin thenetwork andthat theseconstraintsmake theproblemsat
handmuchharderthanthetraditionalproblemsof optimalscheduling,and(iii) whenever possible,providing
approximationalgorithmswith worst-caseguaranteesfor implementingthepolicies. We elaborateon these
resultsfurtherin Section2.1.Muchresearchhasbeenconductedin electricalengineering,onthegeneralarea
consideredhere[35, 51, 11, 4, 5, 36, 49, 50]. However, theseworks do not addressthe issueof contracts
consideredhere.Most of the issuesaddressedin thepastwereconcernedwith finding solutionsto theUnit
CommitmentandEconomicDispatchproblems(see[50, 25] andthereferencestherein).Themainparame-
tersconsideredby theauthorswere:(i) planningoveragiventimeperiod,(ii) setupcostsinvolvedin bringing
thepower unitsto life andthenshuttingthemoff, etc. Researchershave alsousedtechniquesfrom Artificial
Intelligenceto solve Unit Commitmentandrelatedproblems(see[22] andreferencestherein).

Low-bandwidth routing in communicationnetworks. Theabovesettingis alsoapplicablein thecontext of
packet routingin telecommunicationnetworks.Severaltelecommunicationscompaniesaredevisingprotocols
thatsubdivide audioandvideosignalsinto smallerpacketsandreassemblethemat thedestination,for real-
time Internetservices(e.g. phone,fax, etc.) [18, 34]. Theseproblemshasspurredmuchattentionon the
classicalNP-hardmaximumedge-disjoint-pathsproblem(MDP): givena graph  anda (multi-)setof pairs
of verticesin it, connectasmany of the given pairsaspossibleusingedge-disjointpathsin  [30]. The
emergenceof high-bandwidthnetworkssupportingheterogeneousapplicationshasalsoledto ageneralization

2



of theMDP to theunsplittableflow problem(UFP):eachnetwork link hasa capacity, eachrequestpair has
a demand,and to satisfy a request,all of its demandmust be routedthrougha single path [31, 33, 43].
The usualandnaturalassumptionmadehereis that no singledemandexceedsany capacity. What about
the generalizationof theMDP in theotherdirectionto the low bandwidthcase,wherelarge demandsmust
sometimesbe servicedby a fixed network? Sincesomedemandsmayexceedthe link capacities,the flows
for somerequestpairswill have to besplit into differentflow-paths.Theresultsobtainedrevealsomestriking
differencesbetweentheproblemsconsideredhereandtheMDP/UFP.

Organization. In Section2 we presentthe combinatorialoptimizationproblemsconsideredin this paper.
Theformal problemsareanabstractionof theproblemsthatwould ariseasa resultof implementingseveral
of the above-statedpolicies. Section2 alsosummarizesour resultsanddiscussesrelatedwork. Section3
containsillustrative examplesthat provide insightsinto theproblemstructureaswell aspotentialsubtleties
that might arisein a deregulatedenvironment. Section4 outlinesthe computationalintractability results.
Section5 containsuseful new probabilistic tools that might be of independentinterest. In Section6 we
proposethenew market-clearingmechanismandin Section7 describeour approximationalgorithmfor this
problem. This yields asa direct corollary an approximationalgorithmfor the singlesourceversionof the
(0/1-VERSION, MAX-#CONTRACTS) consideredin Section2. Section8 discussesthe extensionof our
resultsto othervariantsandalsooutlineshow theresultsherecanbeusedto improve upontheperformance
of approximationalgorithmsfor certainpackingproblems.Finally, Section9 containsconcludingremarks
anddirectionsfor futureresearch.

2 ProblemDefinitions and Results

The variantsof flow problemsrelatedto power transmissionstudiedhereare intuitively harderthansome
traditional multi-commodityflow problems,sincealthoughthe flow out of a given sourcemust equalthe
flow into the correspondingsink, we cannotdistinguishbetweenthe flow “commodities”(power produced
by differentgenerators).Seebelow andSection3 for moreon this. As a result,standardsolutiontechniques
usedto solve single/multi-commodityflow problemsarenot directly applicableto theproblemsconsidered
here. We will usea new roundingtechniquethat givesgood approximationbounds. We shall usepower
terminologythroughout,but all resultswill hold for themessage/voice-dataroutingdomainsdiscussedabove.
In particular, it is easyto modify our algorithmsfor suchmulti-commoditycaseswherethe flows for the
differentcommoditiesaredistinguishable.

Thebasicsettingis asfollows. Wearegivenanundirectednetwork (thepowernetwork) ������������ with
capacities��� for eachedge� anda set ���! "�$#&%'�)(*%*�*�+�$#+,-�)(.,+�*�0/0/0/+�+�$#21"�)(31&�54 of source-sinknodepairs. Each
pair �$#+67�)(368� has: (i) an integral demandreflectingtheamountof power that #'6 agreesto supplyto (36 and(ii)
a negotiatedcostof sendingunit commodityfrom #'6 to (36 . As is traditionalin thepower literature,we will
referto thesource-sinkpairsalongwith theassociateddemandsasa setof contracts. In general,a sourceor
sink mayhave multiple associatedcontracts.We will find the following notationconvenientto describethe
problems.Thecontractsaredefinedby arelation 9�:;���=<>�=<>?@<>?A� sothattuple �CBD�)EF�5G��)HI�AJK9 denotes
a contractbetweensourceB andsink E for G unitsof commodityat a costof H perunit of thecommodity.
For LM�N�CBD�)EF�5G��)HI��JO9 we denote#+PRQDS&�0�T�UL>�A�VB , #+W�XZY[�UL\�A�VE , ]_^UPRE��UL>�A��G and ��P&#+(`�UL>�A�VH . We
constructa digraph ab�c���edgfhdKijdO 2#k�)(*4k���mln� with source# , sink node ( , capacitiesQpoq�rltsu? and
costs��l�ov�mlwsx? asfollows. For all LNJO9 , definenew verticesB&y and Ezy . Let fj�N 'B-y|{}LNJ~9�4 and
i|�� 'Ezy={&L�J�9�4 . Eachedge '�w�)�D4 from  is presentin a asthetwo arcs �C�w�)��� and �C�v�)�_� thathave the
samecapacityas  '�w�)�D4 hasin  , andwith cost � . In addition,for all L����CB��)Er�5Gt�)HI��J�9 , we introduce:
(i) arcs �CB&y��)B�� and �CEr�)Ezy�� with infinite capacityandzerocost;(ii) arc �$#T�)B-y�� with capacity]_^CPRE��UL\���eG
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andcost � ; and(iii) arc �CEzyt�)()� with capacity]_^UPRE��UL>���VG andcostequaling��P&#+(`�UL>� . A flow is simply an
assignmentof valuesto theedgesin a graph,wherethevalueof anedgeis theamountof flow traveling on
thatedge.Thevalueof theflow is definedastheamountof flow comingoutof # (or equivalentlytheamount
of flow comingin to ( ). A genericfeasibleflow ]g�!�$]R�-� ������o[�C�w�)����Jg� l � in a is any non-negative flow
that: (a) respectsthearccapacities,(b) has # astheonly sourceof flow and ( astheonly sink. Note that for
a given L�J�9 , in generalit is not necessarythat ]&��� �)����]R�D�v� � . For a givencontractLMJg9 , L is saidto be
satisfiedif thefeasibleflow ] in a hastheadditionalpropertythatfor L;�M�CBD�)EF�5G��)H�� , ] �)� � �K�;] � � � � ��G ;
i.e., thecontractualobligationof G unitsof commodityis shippedout of B andthesameamountis received
at E . A contractset 9 is feasible(or satisfied) if thereexistsa feasibleflow ] in thedigraph a thatsatisfies
every contractLeJK9 . Let �V�|#'QT�k��^C�_�$#-�������0�K�"Xq���C(����|� yq &¡ ]_^UPRE��UL>� .

Definition 1 Givena graph ���������� anda contract set 9 , the R-MAX-FLOW problemis to determineif 9
is feasible.

In practice,it is typically thecasethat 9 doesnot form a feasibleset. As a resultwe have two possible
alternative methodsof relaxingthe constraints:(i) relax the notion of feasibility of a contractand(ii) find
a subsetof contractsthat arefeasible. Combiningthesetwo alternatives,we definethe following typesof
“relaxedfeasible”subsetsof 9 .

Definition 2 Let ���������� bea powernetwork, 9 bea setof contracts, a betheassociateddigraph,and ]
bea feasibleflow in a .

1. A contract set 9\l¢:�9 is a 0/1-contractsatisfaction feasiblesetif, £vL!�c�CBD�)EF�5G��)H��¤J¥9\l , ]&��� �)�=�
]R�D��� �Z��G .

2. A contract set 9\l¢:�9 is an I-contractsatisfaction feasibleset if, £vLN�c�CBD�)EF�5G��)H��¤Jp9\l , ]��UL\�Fo¦�
]&��� �)�§��]R���v� ��J¨ +�©�'ª-�0/0/0/2�5G�4 ; i.e., wemustsendan integral amountof flow ]��UL\� from B to E .

3. A contract set 9 l :V9 is an R-contractsatisfaction feasiblesetif, £_L«�¬�CBD�)Er�5Gt�)HI�J�9 l , ]��UL>�>o¦�
]&��� �)�§��]R���v� ��J~® �©�5G[¯ ; i.e., weareallowedto sendanyrationalamountof flow ]��UL>� from B to E .

Remarks: Note that case(3) of Definition 2 is the leastrestrictive; the only requirementwe have is that
thesource-destinationpairssendandreceive equalamountsof flows. Also, all our definitionsincludeat the
very minimumabalancingconstraintfor satisfied(feasible)contracts.For theremainingcontracts,theabove
definitionsdo not imposeany requirementaslong aswe have a feasibleflow ] . Notealsothatgivena flow
] in a , it is easyto recover the “relaxed feasible” set 9\l accordingto any of the above given criteria in
polynomialtime.

Definition 3 Givena graph ���������� anda contractset 9 , the (R-VERSION, MAX-FEASIBLE FLOW) (resp.
(0/1-VERSION, MAX-FEASIBLE FLOW), (I -VERSION, MAX-FEASIBLE FLOW) ) problemis to find a fea-
sibleflow ] in a such that � yZ -¡D° ]��UL>� is maximizedwhere 9\l formsan R-contractsatisfaction(resp.0/1-
contractsatisfaction, I-contractsatisfaction) feasiblesetof contracts.

Observe that (R-VERSION, MAX-FEASIBLE FLOW) and its weightedversioncanbe written as linear
programsandhencesolved in polynomialtime. In contrast,we shall seethat they becomeintractablewhen
somefurther restrictionsareplacedon thestructureof feasiblesolutions.Thenext classof problemsaim at
maximizingthenumberof satisfiedcontracts.
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Definition 4 Givena graph ���������� anda contract set 9 , the (0/1-VERSION, MAX-#CONTRACTS) prob-
lem is to find a feasibleflow ] in a such that { 9\l�{ is maximizedwhere 9\l formsa 0/1-contractsatisfaction
feasiblesetof contracts.

The integerandrationalvariantsof theproblem[(I-VERSION, MAX-#CONTRACTS) and(R-VERSION,
MAX-#CONTRACTS)] arenot asinterestingsincewe cansatisfysmalldemandsandclaim thata contractis
satisfied.We canimposeanadditionalconditionthat for a contractto besatisfied,at leasta certainfraction
of thedemandmustbemet. We shallstudythesenontrivial variantslater. A naturalrestrictionof theabove
problemsis to have all the sources#'6 to sharea commonnode,i.e., £�W5�5#'6>�±# for some #hJ;� . Given a
problem ² above we denotetherestrictionof ² to thecasewhenall thesourcessharea vertex by SINGLE-
SOURCE- ² . Theweightedversionfor eachof theproblems² denotedby WT ³A² is thesameas ² , except
thateachcontractLVJ´9 hasadesiredweight(profit) denotingits importance.

Notethateachproblemabove directly correspondsto a possiblepolicy thatmight beusedto processthe
contracts.See[3, 10, 9, 25, 50] for basicdefinitionsin computationalcomplexity, andfor conceptsrelatedto
thegeneration,operationandcontrolof electricpower.

2.1 Summary of Results

For thefirst timein theliterature,westudythecomplexity andapproximabilityof severalcontractsatisfaction
problems.Wherepossible,we statethehardnessresultsfor themostrestrictedversionsandapproximation
resultsfor themostgeneralversionsof theproblems.Giventheflow network |����������� , welet X@�M{µ�¶{ and
�·�¸{ ��{ . Recallthat an approximationalgorithmfor an optimizationproblem ² providesa performance
guaranteeof ¹ if for every instanceº of ² , thevalue � returnedby theapproximationalgorithmis within a
factor ¹ of theoptimalvalue »>¼\i for º : i.e., �@½¥¹>¾+»>¼>i if ² is aminimizationproblem,and�@�¿»>¼>izÀ2¹
if ² is amaximizationproblem.

Our first mainresultis for thesinglesourceversionof (0/1-VERSION, MAX-#CONTRACTS). We show
thatunlessNP :VÁÂ¼m¼ , no polynomial-timealgorithmcanguaranteeanapproximationfactorof ��ÃÄ2ÅDÆ for
anyfixed Ç�ÈV� , even if all capacitiesare ª andall demandsintegral. As mentionedbefore,this is in sharp
contrastwith thecorrespondingsingle-source versionsof theMDP (polynomial-timesolvable)andtheUFP
(NP-hard,but approximableto within »�.ª+� [31, 32, 15]). SeeSection4 for furtherhardnessresults.Given
this hardness,we formulatea new market-clearingmechanism;seeSection7. Informally, we considerÉ;( -
(0/1-VERSION, MAX-#CONTRACTS) where,givenaprofit Ezy for eachLVJ@9 , we wanta �TÀ�ª solutionthat
maximizesthe profit of the fulfilled contracts.We assumeby scalingthat Ezy�J�® �©�'ª�¯ for all L¸Jj9 , and
show anearlybest-possiblebicriteriaapproximation.Let »>¼\i betheoptimumvalueof thisproblem.Given
Ç�È�� anda flow ] , let ussaythat theflow �.ª>³¥Ç�� -fulfills contractLÊJ¥9 if f ]��UL>�����.ª�³=Ç��t¾&]_^UPRE��UL>� .
Then,in polynomialtime, we canfind a flow in which the total profit of the �.ª\³ËÇ�� -fulfilled contractsis at
least: (i) Ìm�$Ç�¾©»>¼\i , À2�@� if Ç§½cª+À-Í , and(ii) Ìm��»m¼\i�¾v��»>¼\iAÀ2�@�5Î % ÅDÆ$ÏÑÐ.Æ � if ÇKÈ¬ª+À-Í . (Note that if Ç is
“small”, say �©/Òª , thenwe almostsatisfythedemandsof the �.ªÂ³ËÇ*� -fulfilled contracts,while still remaining
closeto the � % Ð , ÅDÆ ° -hardness-of-approximation result.If Ç is larger, i.e., if we arewilling to satisfyasmaller
fractionof thedemands,theobjective functiongetsevenbetter:in particular, if Çz��ªz³�Ó��.ª+ÀIÔÒÕ&Ö×Xw� , we get
to within aconstantfactorof »>¼\i . Thissuggeststhatwhenpossible,wecanchoosesucha relatively large Ç
andconducttherouting in rounds, wheretheroutingis feasiblein eachround.Evenif Ç is ªÂ³ËÓ��.ª+ÀIÔÒÕ&Ö×Xw� ,
we requireonly »�UÔÒÕ&Ö , Xw� roundsto fully satisfythedemandsof the �.ª�³ËÇ*� -fulfilled contracts.)Theabove
assumesthat »>¼\i�Ø=� ; wegetevenbetterresultsif »m¼\i��¥� .

Theabove resultfollows from a moregeneralmulti-source,multi-sink resultthatwe derive. As sketched
in Section3, multi-source,multi-sink problemsaresomewhatcomplicatedby thefact thatwe cannotdistin-
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guishbetweentheflowsfor differentpairs(e.g.,theremaybeno �$#+67�)(368� -pathin theflow graph);weshow how
this issuecanbehandled,andderive thesingle-sourceresultasa corollary. For themulti-source,multi-sink
I-versionof theproblemwherewe wish to maximizethetotal weightedflow, we build on thepreviousalgo-
rithm to deliver a solutionof value Ìm��»m¼\ij¾&ÙÚÑÛD R»m¼\iA�)�g4RÀ2�@� . As mentionedin Section8.2,a hardness
resultof [21] implies that for any fixed Ç�ÈÜ� , approximatingthis problemto within � % Ð , ÅDÆ is NP-hard;
thus,our resultfor the I-versionis essentiallybest-possible1. (The I-version is appropriatefor Internettele-
phony/fax transmissionwheredatais dividedinto atomicpackets.)Work of [21] considerstherelative of the
I-versionwherewe requirethat ]��UL\�>J� +�©�5]_^CPRE��UL\�54 for all LÝJh9 ; it is alsorequiredthat theflow of any
commodityon any arcbeaninteger. Supposeall capacitiesareintegersandthatthemaximumdemand(i.e.,
maximumvalueof ]_^UP2E��UL\� ) is �kÞ¢ß � . An approximationguaranteeof »¤��à �K�kÞ¢ß � ÔáÕ&Ö , �@� is presentedfor
thisproblem,in [21].

Our approachis to conductappropriaterandomizedroundingof multi-commodityflow relaxationsasin
[43], with two main new ideas. First, it is well-known that addingvalid constraintsto relaxationsis often
crucialfor optimization/approximation. Our solutionsdependon akey valid constraint(see(5)) addedto the
“natural” LP relaxation.Second,ourboundsabovefor thecaseÇz½|ª+À-Í dependonanexistentiallyoptimaltail
probabilityboundthatwe derive–seeTheorem5.5; in its absence,our analysiswould have only yieldedthe
boundwe get for Ç\ÈVª+À-Í for thecaseÇ\½Vª+À-Í . (Notethat for any »>¼\iMØj� , our first bound Çt¾-»>¼>i , À2�
is muchhigherthan »>¼>i;¾���»>¼>izÀ2�@� Î % ÅDÆUÏnÐ.Æ as Ç¤s �Tâ ). This comesaboutby a carefulanalysisof the
problemat hand,insteadof straightforwardapplicationof a Chernoff-Hoeffding bound.This tail boundalso
improvestheapproximationfor a classof packingintegerprogramsdueto [42]; seeTheorem8.1. Another
aspectof our I-versionalgorithmis thatit includesthedesignandanalysisof afinal “cleanup”phaseto correct
for somelimits thatmayhave beenexceededby therandomizedrounding.

Threevariantsof ourproblems/methodshave beenstudiedby researchers:(i) Multi-commodityflow and
relatedproblems,(ii) unsplittableflow problems,and(iii) Lagrangeanrelaxation-typework in Operations
Research.We briefly discusstwo of thesenow. The basicMulti-commodity Flow problemconsistsof a
network with capacitieson the edgesanda setof source-sinkpairs  "�$# % �)( % �*�0/0/0/+�+�$#21T�)(.1-�54 with associated
demands.We associatea commodity W with eachsource-sinkpair �$#+63�)(768� . Theproblemis to find anintegral
flow thatis avalid flow for eachcommoditysuchthatthetotalflow oneachedgedoesnotexceedthecapacity
of that edgeandall demandsaresatisfied. The problemis NP-hardandgoodapproximationsareknown
for certainoptimizationversionsof the problem[38, 39]. Next, the unsplittableflow problemresultsfrom
insistingthattheflow for each�$#+67�)(368� , shouldbeonasinglepath[30]; see,e.g.,[30, 43, 33] for approximation
algorithmsfor this problem. An importantspecialcasehereis whenall thesourcevertices#+6 arethesame,
say # . Evenhere,it is NP-completeto decideif thereis asingle # –( 6 pathfor eachW suchthatthetotaldemand
usingany edgedoesnotexceedtheedge’s capacity. Constant-factorapproximationalgorithmsareknown for
several optimizationversionsof this problem[30, 31, 32, 15], andnear-optimal hardness-of-approximation
resultsareknown for its multi-source,multi-sink version[21].

3 Illustrati veExamples: Structure of Solutions

We startby deriving someinsightsinto thestructureof solutionsto theproblemsat hand.Theexampleswill
illustratecontrastsbetweenthisproblemandrelatedflow problemsfrom theliterature.

Example 1. This exampleillustratesthe issuesencounteredasa resultof deregulation. Figure1(a) shows
an examplein which therearetwo power plants L and � . Let us saythateachconsumerhasa demandof
1. Beforederegulation,sayboth L and � areownedby the samecompany. If we assumethat the plants

1Thehardnessresultin [21] holdsonly for directedgraphs.
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Figure1: Figuresfor Examples1 and2.

have identicaloperatingandproductioncosts,thenthedemandscanbesatisfiedby producing1 unit of power
at eachplant. Now assumethat due to deregulation, L and � areownedby separatecompanies.Further
assumethat L providespoweratamuchcheaperrateandthusboththeconsumerssigncontractswith L . It is
clearthatboththeconsumerscannotnow beprovidedpower by L alone.Thusalthoughthetotal production
capacityavailableis morethantotaldemandandit is possibleto routethatdemandthroughthenetwork under
centralizedcontrol,it is notpossibleto routethesedemandsin aderegulatedscenario.

Example 2. Here,thegraphconsistsof a simpleline asshown in Figure1(b). We have threecontractseach
with a demandof 1. The capacityof eachedgeis also1. A feasiblesolution is ]��$# % �)(3ç'���ê]��$# , �)( % ���
]��$#+çR�)( , ���Ýª . Thecrucialpoint hereis that theflow originating at #+6 maynot go to (36 at all — sincepower
producedat the sourcesare indistinguishable,the flow from #+6 joins a streamof other flows. If we look
at the connectedcomponentsinducedby theedgeswith positive flow, we may have # 6 and ( 6 in a different
component.Thuswe do not have a pathor setof pathsto round for the �$#'63�)(36$� -flow. This shows a basic
differencebetweenour problemandstandardmulti-commodityflow problems,andindicatesthat traditional
roundingmethodsmaynotbedirectlyapplicable.

4 HardnessResults
4.1 Hardnessof Simple Instances

We start by recalling two NP-hardproblems. In the PARTITION problem,we are given a finite set ië�
 '( % �)( , �0/0/0/'�`4 of reals,andhave to decideif thesetcanbepartitionedinto two subsetswhich sumup to the
samevalue. In all our usesof this problem,we will let � denote� 6 (36 . In theKNAPSACK problem,we are
givena set f of items,eachwith a certainweightandaprofit; givenabudget É , we needto find asubsetf l
of f whoseitemsaddupto atmost É in weight,suchthatthetotalprofit of theelementsin fIl is maximized.

Theorem 4.1 The WT-(0/1-VERSION, MAX-FEASIBLE FLOW) and WT-(R-VERSION, MAX-FEASIBLE

FLOW) problemsareNP-hard evenfor graphswith a singleedge.

Proof. Reductionfrom PARTITION. Givenaninstancei��� '( % �)( , �0¾0¾0¾+�)(3ì}4 of PARTITION, wecreateagraph
with two nodesQ and B andoneedge�CQZ�)B�� . Thecapacityof theedge�CQw�)B©� is �À-Í . Thereare X contracts;the
W th contracthassourcenodeQ andsinknodeB andthedemandof thecontractis ( 6 . It is now easyto seethat
thereis a subsetof contractswith flow value �À-Í if andonly if i hasa solution.By a similar reduction,but
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startingfrom KNAPSACK, we get thehardnessof (0/1-VERSION, MAX-#CONTRACTS) with integral profit
function. Notethat(0/1-VERSION, MAX-#CONTRACTS) without profit functiondefinedon a singleedgeis
polynomial-timesolvableby a simplegreedyalgorithmthatchoosesat eachstagea contractwith minimum
demand.

In our study, the problemof finding the bestflows with fractional contractsbut with certaincostson
producingthecommodityarose.If thecostfunction is linear, thentheproblemis easilyseento be in P, by
usingthestandardflow formulation.But whenwe have non-linearcostsfor commodityproduction,thenthe
problemturnsout to behardasshown below.

Theorem 4.2 The WT-(R-VERSION, MAX-FEASIBLE FLOW) , WT-(R-VERSION, MAX-#CONTRACTS)
problemssubjectto non-linearproductioncostsanda budget on thetotal costsareNP-hard, evenfor graphs
with a singleedge.

Proof. Thereductionis almostidenticalto Theorem4.1. We usenon-linearcoststo simulate0/1-contracts;
i.e., contractsareeitherchosenor not. The reductionis from the PARTITION problem. Given an instance
i¬�c '( % �)( , �0/0/0/2�)(7ìD4 of the PARTITION problem,we createa graphwith two nodesQ and B andoneedge
�CQZ�)B©� . Thecapacityof theedge �CQZ�)B�� is �À-Í . Thereare X contracts,onecorrespondingto each( 6 . The W th
contracthassourcenode Q andsink node B andthe demandof the contractis (36 . The W th contractneeds�
dollarsfor producing� unitsat thesourceandrequires(36 dollarsfor producingany amountabove � . It can
produceno morethan (76 units. It is easyto seeherethat oncewe choosea contractto producepower, we
might aswell rampit up to its capacity;so,thereis a subsetof contractswith total productioncost ��À-Í and
flow value �À-Í if andonly if i hasa solution.Thereductionfor (R-VERSION, MAX-#CONTRACTS) with
profitsis similar, exceptthatwe performthereductionfrom KNAPSACK.

Wenow considerthecomplexity of (0/1-VERSION, MAX-FEASIBLE FLOW) and (R-VERSION, MAX-
FEASIBLE FLOW) with additionalrealisticconstraints:productionconstraintson theamountof commodity
that eachproducercan produce. We will employ the 3-PARTITION problemfor this. An instanceof 3-
PARTITION consistsof aset i��� '(*%'�0/0/0/�( ç Þm4 suchthateach( 6 hasaweight E 6 J~® ��À2í����À-Í2¯ , andsuchthat
� 6 E�6¢�M�K� . Thequestionis whetheri canbepartitionedinto � subsetswith î elementseach,suchthe
sumof theweightsof theelementsin eachsubsetis exactly � .

Theorem 4.3 (a) The (0/1-VERSION, MAX-FEASIBLE FLOW) problemis strongly NP-hard, whenwe
placea budget on theamountof commoditythateach producercanproduce. (b) The (0/1-VERSION, MAX-
#CONTRACTS) problemis NP-hard whenweplacea budget ontheamountof commoditythateach producer
canproduce.

Proof. Startingfrom aninstanceº of 3-PARTITION, wecreateastarasfollows. WehaveacenternodeQ and
spoke nodes#&% to #'Þ eachconnectedto thestarnode Q . Eachedge �CQw�5# 6 � hascapacity� . Thenode Q has
îR� productionstations� % �0/0/0/2�U��ç Þ . Eachspokenode#+6 hasîR� sinksnamed( 6 % �0/0/0/+�)( 6ç Þ . Wehaveacontract
�¦��ï&�)( 6ï � of value Etï for all �CW5�8ð"� , andeach�©ï hasproductioncapacityEtï . This impliesthatit cansendpower
to only oneof the requestingsinksat any given time, if we assumeno fractionalcontracts.So we seethat
i hasa solutionif andonly if thereis a way to satisfy îR� contractswithout violating theflow andcapacity
constraints.ThusthereductionworksasanNP-hardnessproof for theversionswhere(i) we want to satisfy
themaximumnumberof contractsand(ii) we wantto maximizethetotal flow in thenetwork.

Note: All the above hardnessresultsarefor very simplegraphs:eachof thesegraphsis a treeandhence,
simultaneouslyplanarandof boundedtreewidth.
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4.2 Inapproximability Results

We strengthenthe resultsin Section4.1 andshow that for arbitrary instancesmany of theseproblemsare
inapproximable:they do not evenadmitgoodapproximationalgorithmsin general.Recallthat in themaxi-
mum 3-DIMENSIONAL MATCHING (3DM) problem,we aregivenpairwisedisjoint setsñò��ó×�*Á , anda set
i·:cñô<Ëóê<=Á . The goal is to selecta maximum-cardinalitysubsetiÂl�:±i , suchthat the tuplesin
i l (viewed as î -elementsets)arepairwisedisjoint. Also recall that in the INDEPENDENT SET problemon
graphs,we aregivenanundirectedgraph,andwish to find an independentset(subsetof thenodesin which
no nodeis adjacentto any othernodein thesubset)of maximumcardinality. Westartwith aknown result:

Theorem 4.4 ([1, 23, 40, 29]) (i) UnlessP=NP, õ�ÇAÈ=� such thatnopolynomial-timealgorithmcanguaran-
teeanapproximationfactorof lessthan �.ªIâOÇ*� , for 3DM. Moreover, there is a constant�!�|ª such that this
resultholdsevenwheneach elementin ñNd�ó|d´Á occurs in at most� tuplesin i .
(ii) UnlessNP:�ÁÂ¼m¼ , INDEPENDENT SET doesnot havea polynomial-timeapproximationalgorithmwith
performanceguarantee {µ��{ % ÅDÆ , where {µ�§{ denotesthe numberof verticesin the input graph, and Ç is an
arbitrary positiveconstant.

Webegin with thecaseof boundeddemands.

Theorem 4.5 There is a constant� such that thefollowingholdsfor (0/1-VERSION, MAX-#CONTRACTS),
evenwhenall edgeshavecapacity ª , there is only onesupplier, all verticesexceptthesupplierhavedegree
at most� , andall contractshavevalue î . UnlessP=NP, õ�ÇAÈ=� such thatnopolynomial-timealgorithmcan
guaranteean approximationfactor of lessthan �.ª×â¥Ç*� .
Proof. We provide anapproximation-preserving reductionfrom 3DM. Let the instanceof 3DM consistof
sets ñò��ó×�*Á and iÊ:�ñ·<¨óÜ<OÁ . We constructan instanceÜ�c����dOö×����� of theproblemasfollows.
For each (�J�i we createa node B-�J;� andfor each E÷J|ñcdhó�dOÁ we createa node QD�ÝJeö . We
alsohave a suppliernode #J�ö . We addanedgewith capacity ª from # to eachnodein ö¿ø� 2#k4 . For each
(����C�w�)����ù���J§i , we addedges�CQD���)B-�7�*�+�CQD�"�)B-�7� and �CQ�ú-�)B-�3� with capacityª . Eachnodein � hasacontract
with # with flow value î . Thusif a contractBR� is completelysatisfied,noothercontractwhosecorresponding
setin the3DM instancehasa non-emptyintersectionwith ( canalsobecompletelysatisfied.Thereforethe
optimalobjective functionsof the3DM instanceandthe(0/1-VERSION, MAX-#CONTRACTS) instanceare
thesame.Wemaynow invoke Theorem4.4(i) to completetheproof.

Theorem 4.6 The (0/1-VERSION, MAX-#CONTRACTS) problemis NP-hard even whenrestrictedto in-
stances with the following constraints: (i)  is planar, (ii) each edge in  hascapacityat most ª , (iii)
each vertex hasa boundeddegree, and(iv) all contractshavevalue î .
Proof. Wefirst modify theproof of Theorem4.5asfollows: we have two identicalcopiesof vertices� % and
� , correspondingto i . The verticesB %� J�� % and B ,� J�� , correspondingto a (J¥i will be called twins.
We do not have thenode # asin theproof of Theorem4.5; instead,eachnode B %� is now a supplier. For each
(��Ü�C�w�)����ù��rJOi , we addedges�CQD�©�)B %� �*�+�CQD�"�)B %� � , �CQvú-�)B %� � , �CQ����)B ,� �*�+�CQD���)B ,� � and �CQvú-�)B ,� � with capacity ª .
EachB %� hasacontractwith its twin B ,� with flow value î . Let ;����� % dK� , d@ö¢����� . It is onceagaineasyto
seethat theoptimalobjective functionsof the3DM instanceandthis (0/1-VERSION, MAX-#CONTRACTS)
instancearethesame.Next, we modify theconstructionto obtainhardnessfor planarinstancesasfollows.

Given an instanceû of 3DM, its correspondingbipartitegraph ���UûF� is definednaturallyasfollows:
it is thesamebipartitegraph M�N����d¨ö×����� asin theproof of Theorem4.5,with thevertex # removed. It
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Figure 2: SchematicDiagramshowing how to replacea crossover in the proof of Theorem4.5 to obtain
planarinstances.Thecapacitiesof all edgesare1. Thereductionlocally replacesnodesin thebipartitegraph
representationby new nodes.

is known that 3DM is NP-hardevenwhenrestrictedto instancesû for which ���UûF� is planar[16]. Now,
givensuchan û , we createaninstance of (0/1-VERSION, MAX-#CONTRACTS) asin thefirst partof the
proof,andthenmodify it to make it planarasfollows. Construct���UûF� , andlay eachnodein � , next to its
twin in �[% . A typical suchlayout is depictedin Figure2. This will introduceexactly onecrossover pernode
in � % andasshown in Figure2. We just replacethecrossover by anew node�A����� andsplit theedgesat that
point. All theedgesstill have a capacityof ª . Let usseehow to route î unitsof flow from B %� to B ,� . Since
all edgecapacitiesare ª , B %� hasto sendexactlyoneunit oneachof theedges�CB %� ���'� , �CB %� �)�[� and �CB %� �)��� . The
flow at � hasto beroutedthrough � andthuswe have exactly Í unitsof flow comingin at � andsincethere
are Í edgescomingout, thesecanbesentoutwithout violatingany constraints.

Theremainingdetailsaresimilar to theproof of Theorem4.5.

NotethatTheorem4.5providesinapproximabilityresultsrestrictedto non-planarinstanceswith a single
source.Ontheotherhand,Theorem4.6onlyprovestheNP-hardnessof (0/1-VERSION, MAX-#CONTRACTS)
for planarinstances2 but with multiple source-sinkpairs.Wenow strengthentheresultsin Theorems4.5and
4.6whendemandsgrow polynomiallywith input size.

Theorem 4.7 UnlessNP :�ÁA¼r¼ , no polynomial-timealgorithmcanguaranteea performanceof ��ÃÄ ÅDÆ for
(0/1-VERSION, MAX-#CONTRACTS), for anyfixed ÇmÈ�� . Thisholdsevenwhenall edgeshavecapacity ª ,
there is onlyonesuppliernode, andall contractsare integer-valued.

Proof. We provide an approximation-preserving reductionfrom INDEPENDENT SET (IS) to the problem.
If X and � arethenumberof nodesandedgesin theIS instance,thenumberof arcsin theproblemwill be
»�CXKâ=�@� . SinceTheorem4.4(ii) shows that IS is alsohardto approximateto within � % Ð , ÅDÆ , the theorem
will follow. Let a÷�!��������� betheinstanceof IS. Createa graph �l_�!�7ö¿dòÉh���mlÑ� asfollows. Theset É

2Theplanarversionof 3DM hasa polynomial-timeapproximationscheme[2].
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is a copy of � . Wewill abusenotationandreferto thecopy of B in É as B . For every edge�\�V 'QZ�)BD4�J@� ,
createa node �v�mJ�ö andedges '���2�)Qq4 and  '�v�+�)BD4 in �ml . Also createone“supply node” #¤J~ö andedges
 & 2#k�)� � 4K{D��JO�4 . All edgesin �l have capacity ª . Eachnodein É hasa contractwith # with flow value
equalto its degreein a (which is alsoits degreein  l ). To satisfythecontractof any E�JgÉ , theremustbe
oneunit of flow to E from eachnodein ö adjacentto E . Sinceonly oneunit of flow canbesentto any node
in öjø� 2#k4 , no othernodein É adjacentto E in  canhave its contractsatisfiedif E ’s contractis satisfied.
Sothereis abijectionbetweenfeasiblesetsof contractsin \l andindependentsetsof thesamesizein a .

Recallthat,in contrast,suchproblemsfor single-sourceunsplittableflow have »�.ª+� [or »�UÔÒÕ&Ö�Xw� for the
weightedcase]-factorapproximationalgorithms.Our hardnessresultshows a significantdifferencebetween
unsplittableflow andour splittableflow problems.Onekey causeof this differenceis that (0/1-VERSION,
MAX-#CONTRACTS) canspecifyin a very strict mannerasto how theflow startingat a vertex canbesplit.
For example,the (0/1-VERSION, MAX-#CONTRACTS) instancein theproof of Theorem4.7 specifiesthat
theflow to eachnodein É mustbesplit alonganumberof pathsequalto thedegreeof thenodein a .

5 Usefulprobabilistic tools

Henceforth,an “efficient” algorithmwill meanan algorithmrunning in polynomial time. We next present
some(probabilistic)techniquesrelevant to our analysis.Let � denotethebaseof thenaturallogarithm. We
abbreviatethephrase“randomvariable”by “r.v.”.

Constructiveversionsof certain low-probability events.A significantresultin derandomizationtechniques
is thatcertainrandomstructuresthatactuallyhave very low probabilitiesof beinggeneratedby someunder-
lying randomprocess� , canbe constructedefficiently if � hassomesuitablestructure.Onesuchtool is
Theorem4.3 of [44], which appearsasTheorem5.2 here. To do so, we will needthe following prelimi-
nariesfrom [44]. Given ����÷�U� % ��� , �0/0/0/2�����*�¶J| +�©�'ªR4 � and �	 � � 	 % � 	 , �0/0/0/'� 	 ���¤J| +�©�'ªR4 � , let us saythat
���
 �	 if f �"6A½ 	 6 for all W . Supposeñ % �)ñ , �0/0/0/'�)ñ�� areindependentr.v.s, eachtakingvaluesin  +�©�'ªR4 . Let
�ñ /�Ü�Cñ % �)ñ , �0/0/0/'�)ñ���� . Defineanevent  to be increasingif f: for all ��gJ= +�©�'ªR4 � suchthat  holdswhen
�ñ ���� ,  alsoholdswhen �ñ � �	 , for any �	 suchthat ���
 �	 . Analogously, event  is saidto bedecreasing

if f: for all ��¶Jg +�©�'ªR4 � suchthat  holdswhen �ñc���� ,  alsoholdswhen �ñc� �	 , for any �	 
��� .
The basicway in which Theorem5.2 will be useful for us is as follows. Suppose� % ��� , �0/0/0/+���z� are

someeventsthataredeterminedcompletelyby �ñ . Each �z6 is a “bad” event from our perspective; we want
to efficiently find a valuefor thevector �ñ underwhich noneof theevents �z6 hold. Theorem5.2 presentsa
usefulsufficient conditionto this end;we next presentsomefurthernotationin orderto understandTheorem
5.2. An r.v. � is said to be a well-behavedestimatorfor an event � (w.r.t. �ñ ) iff it satisfiesthe following
properties(P1),(P2),(P3)and(P4), £vQO½��R�I£Di��� 'W % �)W , �0/0/0/+�)W���4:M® ��¯ , andfor all

	 % � 	 , �0/0/0/+� 	 �KJ~ +�©�'ªR4
for which ���2��� � ��� % �Cñ�6��¤� 	 �*�)�r�! � ��� % ���2�Cñ�6"�� 	 �*��È�� . For notationalconvenience,we let # denote
“ � � �$� % �Cñ�6 � � 	 ��� ”.
(P1) E ® �_{ #t¯ is efficiently computable:i.e.,computablein ��P-^C�[�%�'� time;

(P2) �&�+�'�¢{ # ��½ E ® �_{ #t¯ ;
(P3) if � is increasing, thenfor all W(�*) % J~�)® ��¯�³gi\� with ���R�Cñ�6�+-, Ã �Mª+� J~�U�©�'ª+� , E ® �_{ �Cñ�6"+., Ã ���T�0/1#�¯I½E ® �_{ �Cñ�6 +-,

Ã
�Vª+�2/3#�¯ ; and

(P4) if � is decreasing, thenfor all W��*) % JO�)® ��¯D³gi\� with ���+�Cñ�6 +., Ã ��ª+� JO�U�©�'ª+� , E ® �_{ �Cñ�6 +., Ã ��ª+�2/1#t¯Z½E ® �_{ �Cñ�6"+-, Ã ���T�2/3#�¯ .
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Remark 5.1 Thecondition“ �&�2�Cñ�6 +., Ã �Mª+�AJ��U�©�'ª+� ” is specifiedin (P3)and(P4)for thefollowing reason:
if ���2�Cñ 6 +., Ã �«ª+��J~ +�©�'ªR4 , thenoneof thetwo terms“E ® �_{ �Cñ 6 +., Ã ���T�4/3#t¯ ” and“E ® �_{ �Cñ 6 +., Ã �«ª+�0/3#t¯ ”will be undefined.To gain someintuition about(P1)–(P4),note that if � is 5¢�'�I� , the indicator r.v. for � ,
it satisfies(P2), (P3) and(P4). However, in our applications,it will be unclearif (P1) is true if �O��5 �'�I� .
Thus,we seeka r.v. � which “mimics” 5¢�'�I� in that (P2), (P3) and(P4) hold; we alsowant the “efficient
computability”property(P1)to hold for � .

If � satisfies(P1)and(P2)(but notnecessarily(P3)and(P4)),wecall it aproperestimatorfor � w.r.t. �ñ .
For any r.v. ñ andevent  , let E’ ® ñK¯ denoteÙÚÒÛv E ® ñK¯��'ªR4 .

Theorem 5.2 ([44]) Suppose �ñê���Cñ % �)ñ , �0/0/0/+�)ñ��*� is a sequenceof independentr.v.s ñ�6 , with ñ�6�Jg +�©�'ªR4
for each W . Let �m%'���A,-�0/0/0/'��� � beeventsand SR�5# benon-negativeintegers with Szâ=#r½¥( such that:
(i) � % ��� , �0/0/0/+���76 are all increasing, with respectivewell-behavedestimators � % �8� , �0/0/0/'�8�96 w.r.t. �ñ ;
(ii) �76:) % �0/0/0/2���;6:)[� areall decreasing, with respectivewell-behavedestimators �<6:) % �0/0/0/+�8�96:)[� w.r.t. �ñ ;
(iii) �76:)[�$) % �0/0/0/+���A� arearbitrary events,with respectiveproperestimators �96:)[�$) % �0/0/0/2�8�R� , and
(iv) all the �z6 and �-6 are completelydeterminedby �ñ .

Then,if

ª�³p�
6=
6>� % �.ªA³ E’ ® �-6Ñ¯C�)�qâ�ªz³p�

6:)[�=
6>�?6:) % �.ªz³ E’ ® �-6C¯C�)�qâ

�@
6>�?6:)[�$) % E ® �-6C¯ZØ|ª (1)

holds,wecanconstructa valuefor �ñ in poly�%�tâ�(�� timedeterministically, underwhich noneof the �A6 hold.
(Asusual,emptyproductsare takento be ª ; e.g., if #���� , then  6:)[�6>�?6:) % �.ªz³ E’ ® �-6Ñ¯C�&AVª .)

Themainpoint is that ���+� � 6 �"6�� canbetiny: say, exponentiallysmall in �%�×â�()� . However, aslong asthe
requirementsof Theorem5.2aremet,we canefficiently setvaluesfor the ñ�6 sothatall the �-ï areavoided.

Remark 5.3 As pointedout in [44], thereis asimplewayof checkingproperties(P1)–(P4)above,for agiven
r.v. � . Recall that in our definition of well-behavedness,# is short-handfor “ � � �$� % �Cñ�6"�¤� 	 ��� ”, wherethe
indicesW � aswell asthebits

	 � arearbitrary. Now, evenconditionalon # , the ñ 6 canbeviewedasindependent
r.v.s: it is only thatfor eachW7� , ñ�6 � � 	 � with probability ª . Thus,in orderto checkany of theproperties(P1)–
(P4), it sufficesto checkthat for anychoiceof theprobabilities�&�+�Cñ�6¢��ª+�*�¢Wz��ª-�5Í��0/0/0/R�8� , theproperties
hold when QK��� (i.e.,when # is thetautology).

A newtail inequality. Wenow presentanimprovedtail boundfor acertainproblem,in Theorem5.5.This is
a resultwheremorework is requiredthanastraightforwardapplicationof Theorem5.4.Westartby recalling
thestandardChernoff-Hoeffding bounds.

Theorem 5.4 (Chernoff-Hoeffding bounds [8, 27]) Let ñ % �)ñ , �0/0/0/+�)ñ�� be independentr.v.s, each taking
valuesin ® �©�'ª�¯ , with 9;� � � 6>� % ñ�6 andE ® 9�¯w½CB . For any D��=� ,

�&�+�U9��EBt�.ª×âED-�)��½ E ®á�.ª âED-� ¡ ÅGF Î % )IH Ï ¯Z½¿��'B��JD-� /���$� H À©�.ª âKDR� Î % )IH Ï � FML (2)

if E ® 9�¯I�EB and �½ND�Ø|ª ,
�&�+�U9�½EBt�.ªz³OD-�)��½ E ®á�.ªÂ³OD-� ¡ ÅGF Î % Å H Ï ¯Z½=a��'B��JD-� /�|� ÅGF H

Ä Ð , / (3)

12



Theorem 5.5 Let �ñ �ô�Cñ % �)ñ , �0/0/0/+�)ñ���� be a sequenceof � independentrandomvariableseach taking
valuesin  +�©�'ªR4 , and let Á!�N� 6 S 6 ñ 6 , where each S 6 lies in ® �©�'ª�¯ . SupposeE ® Áz¯A½Nª+À�P for somePpÈ�ª .
Then,for any ÇOÈ¸� , there is an explicitly presentedwell-behavedestimator � for the (increasing)event
“ ���+��Á��;�.ª×â=Ç*�)� ” w.r.t. �ñ ; also,E ® �k¯w½;�$� , âËÙRQ<Sv 2Í��5Ç Å % 4R�)À�P , .

Theproof of Theorem5.5is shown in theappendix.To appreciatethetheorem,think of PòÈ|ª as“large”
and Ç asa “small” positive constantsuchas �©/éÍ ; we wanta tail bound,i.e.,aboundon �&�+��Áe���.ª×â=Ç*�)� , that
is »�$Ç Å % P Å , � . Direct useof Markov’s inequalityandof (2) only yields thebounds»¤�.ª+À�P�� and »��P Å Î % ) Æ$Ï �
respectively. Also, this »�$Ç Å % P Å , � boundis existentially optimal to within a constantfactor, for all P��
�$Í&Ç*� Å % . To seethis, suppose�O� Í , S % � Ç , S , � ª , E ® ñ % ¯�� �$Í&Ç-P�� Å % , and E ® ñ , ¯�� �$ÍTPv� Å % . Then,
���2��Á��;�.ª×â=Ç*�)���U�&�+�Cñ % �jñ , �Vª+���M�CíTÇ.P , � Å % .

6 Newmarket-clearingmechanism

Westartby describingamulti-source,multi-sinkproblemthatcanbeviewedasanew market-clearingmech-
anism. As mentionedearlier, oneof the main corollariesof our approximationalgorithmfor this problem,
is an approximationalgorithmfor SINGLE SOURCE-(0/1-VERSION, MAX-#CONTRACTS). We startwith
an informal description,andthenformally presentthe multi-source,multi-sink flow problemthroughcon-
straints(A1)–(A4) below. By anon-negativeflow ] in adigraph ;�M��������� , ourpresentcontext will simply
meana setof flow values  2]<�&� �O���¥oV�CQZ�)B��KJ|�4 ; thesevaluesneednot satisfyany conservation con-
straintsetc.,unlessotherwisespecified.Given ] , the netoutflowfrom B�Jp� , ]9V �'� �CB�� , is definednaturally
to be ��� �TW Î �'� � Ï  9X ]R�0� �"��³���� �TW Î �k� � Ï  9X ]<�&� �2� . Similarly, thenet inflow into B is ]R6 ìv�CB©� �«³A] V �'���CB©� . For any
non-negative integer Y , let ®µY"¯ /�� Tª-�5Í��0/0/0/-�5Y�4 .

We aregivena digraph !�Ü��������� anddisjoint subsetsf (for “suppliers”)and � (for “customers”)of
� . (If  is undirected,replaceeachedge  'QZ�)BD4 by thearcs �CQZ�)B©� and �CBD�)Q_� .) Eachedge �CQw�)B©�rJ~� hasa
capacity� �&� � È=� ; each#rJ�f hasacost�I�$#-�¢È=� , andeach(�Jò� hasademand� � È=� andaweight E � È=� .
(By scaling,we will assumethat thecostsandweightslie in ® �©�'ª�¯ .) We arealsogivena budget � . We will
denote{µ�¶{k��X and { ��{k�j� throughout.Each#FJ@f is asupplierwhocharges�I�$#-� perunit outflow from # ;
theweight E�� for (zJg� reflectsthe“importance”of customer( . We wish to constructa non-negative flow ]
in  andto choosean L�:�� , suchthat: (i) if B�YJ¨f , then ] V �+�)�CB��z½j� (i.e.,no vertex outsideof f cansend
outnetpositive flow) andif BZYJ@� , then ]R6 ì��CB�� ½=� ; (ii) for all ( JKL , thereis anetinflow of at least�k� (or, in
a slightly relaxedsetting,at least �T�5�.ªA³�Ç*� for somegiven Ç\È�� ), and(iii) no edgecarriesa flow morethan
its capacity.

We next discusspaymentpolicy. Given ] , notethat ]9V �'� �$#-� for any #�J~f canbeviewedastheamount
of flow contributedby # . Suppose# charges���$#R� perunit netoutflow. Then,we canseethat � �) �[ ] V �'���$#R�t�
� �U �\ ]R6 ìv�C()� , which equalssome û , say. Thus,supplier # providesa fraction ] V �'���$#R�)ÀRû of the total flow.
Hence,each(mJË� canpay ]R6 ìv�C(���¾*���$#R��¾-] V �'���$#-�)ÀRû to eachsupplier # . This way, eachcustomer( paysan
appropriatefractionto eachsupplier(i.e.,dividesuphispaymentin anappropriatewayamongthesuppliers),
andeachsuppliergetsherrightful totalamountof ��� �U 9\ ] 6 ì �C(��w¾3�I�$#-�w¾0]9V �'� �$#-�)ÀRûF�t���I�$#R�.]9V �'� �$#-� . Thus,the
total amountpaid is � �) �[ �I�$#-�.] V �+�)�$#-� , andour next constraintis that this shouldnot exceedthebudget � :
(iv) � �) �[ �I�$#R�.] V �'���$#-� ½=� . Finally, theobjective is to maximize � �U Ry E�� (theweightednumberof satisfied
customers).

Formally, theproblem] is to constructanon-negative flow ] in  andto choosean Le:¿� , suchthat:

(A1) £�B^YJ@f , ] V �'���CB©��½=� and £�B_YJò� , ]R6 ì_�CB©� ½=� ;
(A2) £�(¢JKL , ]R6 ì��C()���=�k� ;
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(A3) £��CQw�)B©� Jò� , ]<�&� �r½p�.�k� � , and

(A4) � �) �[ �I�$#-�.]9V �+� �$#-� ½=� .

Subjectto theseconstraints,wewish to maximize � �U -y E�� . Weshallmainly focusonthe“ Ç -relaxed” variant
of ] whereincondition(A2) is weakenedto “(A2’): £v(FJ¥LF� ]R6 ì��C(������k�5�.ª\³=Ç*� ”. Setting �±��` in the
Ç -relaxed versionof ] yields the Ç -relaxed versionof a commongeneralizationof (0/1-VERSION, MAX-
#CONTRACTS) and 0/1-MAX-FLOW where,given a profit Ezy for each L J�9 , we want a �TÀ�ª solution
thatmaximizestheprofit of fulfilled contracts.Theorem7.2will presentanapproximationalgorithmfor the
Ç -relaxedversionof ] .

6.1 Rationale for the Model

Althoughthemodelproposedabove relaxesthenotionof contractsasdefinedearlier, the relaxed versionis
directly motivatedby the Poolcomodelcurrentlyemployed in California [7]. In this model,eachproducer
bids for variousamountsof power that it is willing to sell at particularprices. The customersdo not bid
for power; the ISO usessimplemechanismsto “heuristically” selectthecheapestsetof producerswho can
fulfill therequirement.Themaindifferencethoughis thatthestrike priceof power chosenis thesameacross
all producersand in generalthis is equalto the highestbid price at which the market clears(this implies
balancingthe supply and demandwhile obeying the network capacityconstraints). The proposedmodel
tries to overcomethe obvious drawback in the currentmodel usedin California (referredas the Cal-ISO
model);namelyby trying to minimizethetotalcostincurredby thecunsomers(specifiedby abudget� ). We
believe thattheproposedmodelis muchbetterin termsof avoiding escalatingpowerpricesthatarecurrently
witnessedin the California power market (seeAugust 04 and August 14 2000 articlesin the Wall Street
Journal [48] thatelaborateon thissubject).

7 Approximation algorithms for the new market-clearingmechanism

In thissection,wepresentapproximationalgorithmsfor acertainmulti-source,multi-sinkflow problemthatis
presentedin Section6, andderive analgorithmfor SINGLE SOURCE-(0/1-VERSION, MAX-#CONTRACTS)
asa corollary. Thealgorithmsstartby modelingtheproblemasan IntegerLinearProgram(ILP). The inte-
grality constraintsof the ILP arerelaxed, leadingto a linearprogram(LP); theLP canbesolved efficiently
using,e.g.,well-known polynomialtime algorithmsfor linear programming.Oneof thenoteworthy points
hereis theadditionof certainvalid constraints to theLP. Wethenpresenta randomizedroundingapproachto
roundthefractionalsolutionobtained,andshow how to extractanefficient deterministicroundingalgorithm
from it with provable worst-caseguarantees.This overall schemefor devising approximationalgorithms
abovehasbeenstudiedpreviouslyby many researchers.Thenovel aspectsof ourwork aretheintroductionof
certainvalid constraints,aswell theexistentiallyoptimal tail probabilityboundof Theorem5.5. Theselead
to near-optimalperformancebounds.

7.1 An LP relaxation and its rounding

A good(linearprogramming)relaxationfor ] or for ] ’s Ç -relaxation,maynotbeimmediatebecauseof flow-
indistinguishability; a little carehelps.Supposewehaveanon-negative flow ] in adigraph;����������� , such
thatfor somegiven aw�3¾¦� ,

£��CQw�)B©� Jò���]<�&� �m½=�-�&� �k� and £�B¶J@����] V �+�)�CB��t�baw�CB©�*/ (4)
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Via standard“flow decomposition”ideas(see[3]), ] canbeefficiently transformedinto a setof “path flows”
that still essentiallysatisfy (4) in the following sense. We can efficiently constructa set of flow-paths
 +¼Z6�oêª�½ WO½c�24 , where ¼w6 is from some QD6 to some B-6 and hassomeflow value �T6�È � . We can
ensurethefollowing properties.

(B0) �>½¥� ;

(B1) £�B�J@� :

(i) If aZ�CB���È¥� , then B^Y�jB-6 for any WtJ~® �*¯ ; also, � 6'W �.�?�ed �"6[�faZ�CB©� ;
(ii) if aZ�CB���Ø¥� , then B^Y�jQD6 for any W×JO® ��¯ ; also, � 6'W �.�v�gd �"6Z�V³7aw�CB©� ;
(iii) if aZ�CB��t�j� , then B^Y�jQD6 and B_Y�jB-6 for any W¢Jh® �*¯ .

(B2) £��CQw�)B©� Jò� , � 6%W Î �&� � Ï  <h�d �"6�½=�-�&� � .
Considerthe following LP, (LP1), relatedto our mainproblem. Let �N�Ü '(5%'�)(.,R�0/0/0/+�)(.1k4 . TheLP is to

defineY realvariables� % �0/0/0/2�)��1 eachlying in ® �©�'ª�¯ , andto constructY non-negative flows ] Î % Ï �5] Î , Ï �0/0/0/*] Î 1 Ï
on  suchthat:

(C1) in eachflow ] Î 6 Ï , flow-conservationis satisfiedatall nodesin ��³§��f�d> '( 6 4R� , ( 6 is theonly nodeallowed
to have apositive in-flow, and ] Î 6 Ï6 ì �C(36�� �¥�k6U�D6 ;

(C2) thetotal flow onany edge�CQw�)B©� is atmost �-�&� � , i.e., � 6C ji 1.k ] Î 6 Ï�&� � ½=�-�&� � ;
(C3) � � �) �[ �I�$#-�`� � 6C ji 1.k ] Î 6 ÏV �'� �$#R�)�)�z½=� , and,crucially,

(C4) £��CQZ�)B�� JK�¿£�WtJ~®µY"¯���] Î 6 Ï�k� � ½=�-�&� �'�D63/ (5)

Subjectto theseconstraints,theobjective is to maximize � 6n li 1.k E 6 � 6 .
It is easyto checkthat the above canbe written asan LP, andwe now show that any optimal integral

solution to our problemleadsto a feasiblesolution to this LP. Given any optimal integral solution,define
�D6×�!ª if W�J~L , and � otherwise.Do a flow-decomposition,andnotefrom (B1) thatonly verticesin f can
bethesourcesin theresultingflow paths,andthatonly verticesin L will besinks. Now interpretthesetof
all theflow-pathsthatendin any given (76\J=L asthe flow ]wÎ 6 Ï for our LP. From (B2), we alsoseethat the
total flow onany edge�CQZ�)B�� is atmost �-�&� � ; thebudgetconstraintof ourLP (constraint(C3)) is alsosatisfied.
Constraint(C4) will becrucial;we now checkthat (C4) is alsosatisfied(i.e., that it is a valid constraint).If
WmYJ¿L in thegiven optimal integral solution,thennotethat no net positive in-flow will be sentto ( 6 in this
integral solution; thus,if ��6 �«� , then(C4) holds. On theotherhand,if thegivenoptimal integral solution
setsW>JËL , thenwe have ��6¢�Êª and(C4) holdssince(C2) does.Thus,any optimal integral solutionleads
to a feasiblesolutionto (LP1) with the sameobjective function value; hencewe indeedhave a relaxation.
Let »m¼\i and �on respectively denotetheoptimalvaluesfor ourproblemandfor (LP1);we have asusualthat
»>¼\i�½=� n .

Wenow show how to roundanoptimalsolutionto (LP1), to solve the“ Ç -relaxed” variantof ourproblem.
Startwith anoptimalsolutionto (LP1), andconducta flow decomposition.For each(76 JO� , we geta setof
flow-paths¼w6C� % ��¼Z6C� , �0/0/0/ , each¼w6C� ï originatingfrom some#+6n� ïmJ@f andcarryingaflow of value ù'6C� ïr�=� ; (C1)
shows that � ï ù'6C� ï����k6U��6 . Let p¨È;ª beaparameterthatwill bechosenbelow. Independentlyfor eachW , set
a randomvariable ó 6 to ª with probability � 6 Àep , and ó 6 o¦�M� with probability ª�³�� 6 Àep . If ó 6 ��ª , we will
chooseto satisfyan �.ª>³=Ç*� -fraction of (76 ’s demand;i.e., for all ð , we will multiply theflow values ù+6n� ï by
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�.ª¢³gÇ*�)À2��6 . If ó�6q��� , wewill chooseto have zeroflow sentto (36 : i.e.,wewill resetall the ù+6C� ï to � . Thisflow
yieldsour final flow, andwe set L«�� '( 6 J=�Êoòó 6 �¬ªR4 . We now analyzethis roundingprocessandalso
selectasuitablepgÈ|ª .
7.2 Analysis of the Rounding

Recallthat � denotesthenumberof edgesin  . We startby listing the �!â¿Í eventsthatwe wish to avoid
simultaneously:
(a) For any edge �CQw�)B©�mJh� , let �7�&� � bethe“bad” event that thefinal total flow ]<�&� � on it is morethan �-�&� � .
Wehave � suchbadevents.
(b) Let iÂ¼ bether.v. denotingthefinal payment;let �ml bethebadeventthat iÂ¼MÈ=� .
(c) Recall that the objective function »>�rq equals � 6n li 1.k E�6UóD6 . Our final bad event � l l is that »>�rq±½
� n À©�$Í*pq� .

Wenow show how to chooseasuitablepgÈ�ª andthenapplyTheorem5.2in orderto avoid all of theabove
��âjÍ events. As a result,we will obtaina solutionto the Ç -relaxed variantof our problem,with objective
functionvalue Ìm�C� n Àepq� . Theunderlyingindependentbinary randomvariablesin thesenseof Theorem5.2,
arenow ther.v.s ó % ��ó , �0/0/0/+��óv1 . Furthernotethat thefirst �Ýâ;ª eventsabove (i.e., thoseof (a) and(b)) are
increasing,while the last event �ml l is decreasing.In order to employ Theorem5.2, we needwell-behaved
estimatorsfor our �câeÍ bad events; this is simple for events �ml and �rl l . First, it is easyto verify that
� l �;iÂ¼ÂÀR� is a well-behaved estimatorfor � l . Second,since »m�sqO��� 6n li 1.k E�6UóD6 hasmean�on0Àep , we can
checkusing(3) that

� l l ��Í � � Ð Î ,�t Ï$ÅMu2vxw ��Í � � Ð Î ,�t Ï ¾ =
6C li 1Jk

Í Å �yd%z{d

is a well-behavedestimatorfor �rl l . Also, dueto thescalingdown by p , we have E ® iÂ¼\¯w½¿��Àep ; this and(3)
show respectively that

E ® � l ¯w½;ª+Àep L E ® � l l ¯Z½¿� Å � � Ð Î}| t Ï / (6)

Wefinally considerthe � eventsin (a). Considerthebadevent �;�&� � . Wecanseethat ]<�k� �Â�|� Î 6C� ï Ï W Î �&� � Ï  <h�d>~ � �Uù'6C� ïT�.ª&³Ç*�)À2�D68�3ó�6 ; hence,

E ®µ]<�&� �`¯[� @
Î 6C� ï Ï W Î �k� � Ï  9h�d"~ �

�Uù+6C� ïT�.ªz³hÇ��)À2�D68�I¾T�C�D68Àepq� ½=�-�&� �"�.ªz³~Ç*�)Àepw� (7)

since � Î 6C� ï Ï W Î �&� � Ï  9h�d"~ � ù'6C� ï>½=�-�&� � by (C2) and(B2). Wehave

� �&� � A�� @
Î 6C� ï Ï W Î �&� � Ï  9h�d"~ �

ù'6C� ï
�D6U�-�&� � ó 6 È|ªtâ

Ç
ªz³OÇ �*/ (8)

Crucially, we candeducefrom (C4) that for all �CW5�8ð"� andall edges�CQw�)B©� in ¼Z6C� ï , ù+6n� ïh½«��6C�-�&� � . Also, (7)
shows that

E ® @
Î 6n� ï Ï W Î �&� � Ï  <h�d"~ �

ù'6C� ï
�D6U�-�&� � ó 6 ¯w½;ª+Àepw/

Thus,by Theorem5.5,thereis awell-behavedestimator�9�&� � for �7�&� � , with

E ® �9�&� �0¯w½��$� , âËÙRQ<Sv 2Í��+�.ªA³~Ç*�.Ç Å % 4R�)Àep , / (9)
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Thereis abetteralternative to this choiceof �<�&� � , if ÇÂÈ|ª+À-Í . Thebound(2) shows that

� �&� � /���.ªA³hÇ*� Î % ÅDÆ$Ï�� Ã Å �K� d"~ �$��� � + ~ ������� d>~ � ú�d"~ � Ð Î �{d�� + ~ � Ï z{d

is alsoasuitablewell-behavedestimatorfor �;�&� � , with

E ® �9�&� �0¯w½�� �T�.ªz³OÇ��p � Î % ÅDÆ$Ï � Ã / (10)

Let � be the boundon E ® �<�&� �'¯ that we choose,eitherfrom (9) or from (10). In orderto simultaneously
avoid all the � events�7�&� � andtheevents � l and � l l , Theorem5.2and(6) show thatthefollowing condition
is sufficient:

�.ªz³¥ª+Àepq��¾"�.ªA³¨ÙÚÒÛv )�Z�'ªR4R� Þ Èp� Å � � Ð Î�| t Ï / (11)

Remark 7.1 Hereanda few timesmorein thepaper, wewill needto choosethescalefactor p¨È|ª to satisfy
boundssuchas(11). We will alwayschoosepj�MÍ ; also,we will ensurethat p is large enoughso that the
term“ � ” is atmost ª+À-Í . Recallthatfor ��½¥�g½|ª+À-Í , ª�³´���p� Å , � . Thus,e.g.,in (11), it will suffice to show
that �Ë½«ª+À-Í , andthat ÍkÀep´â¿ÍR���¥Ø|� n À©���*p[� . This recipeof ensuringthat ��½Ýª+À-Í andlower-boundinga
termsuchas �.ªz³§�[� Þ by � Å ,.Þ0� , will beuseful.

Following Remark7.1, a simple calculationshows that if constants�s�-�:� % and � , are chosenlarge
enough,(11) will hold in eachof thefollowing threecases.(In (i) and(ii), we usethebound(9) on E ® �<�&� �'¯ ;
in (iii), we usethebound(10) on E ® �9�&� �0¯ .) (i) p¨���r�'À à Ç , if ��nF��� ; (ii) pg��� % �@À©�$Ç��on'� , if ��nrØ�� and
�ØpÇz½;ª+À-Í ; (iii) pK�U� , �C�@À2��n0�5Î % ÅDÆ$ÏÑÐ.Æ , if ��n\Ø¥� and ª+À-ÍØ¿Çz½|ª . We thusget

Theorem 7.2 Considerthemulti-source, multi-sinkflowproblem] . Therearepositiveconstants���R�*� % and
� , such that for the Ç -relaxedversionof problem ] , wecanoutputa feasiblesolutionof thefollowing value
in deterministicpolynomialtime. (i) � � à Ç)� n , if � n �p� ; (ii) �A%5Ç+�C� n � , À2� , if � n Øp� and �¶Ø¿ÇÂ½�ª+À-Í ; (iii)

� , � n ¾"�C� n À2�@� Î % ÅDÆ$ÏÑÐ.Æ 4 , if � n Ø=� and ª+À-Í�ØpÇA½|ª .
In particular, part (ii) providesa bicriteria resultfor thegeneralproblem ] , that is not far from thehardness
thresholdfor thesingle-sourcecase.

8 Extensionsand Applications

Wenow presentsomeextensionsandapplicationsof theproblemsandideasof Section7.

8.1 Approximating packing integer programs

An applicationof Theorem5.5 is to improving certainapproximationboundsshown in [42] for a family of
packinginteger programs(PIPs). Given L¬J;® �©�'ª�¯ Þ�� ì , 	 J;® �©�.`=� Þ and �´J|® �©�'ª�¯ ì with maxï\�.ï��±ª , a
PIP seeksto maximize �.�h¾&� subjectto ��J�Á ì) and LA��½ 	

. We alsodefine �¸��ÙÚÒÛ©6 	 6 ; we cantake
�Ý�;ª without lossof generality[42]. PIPsmodelvariousNP-hardproblemssuchasknapsack,independent
setsin graphs,andmatchingsin hypergraphs. A naturalLP relaxationfor a PIP is to relax “ �VJVÁ ì) ” to
“ ��J«? ì ) ”. (We could also have constraintssuchas “ ��ïjJÜ +�©�'ª-�0/0/0/2���Rï-4 ”, for somegiven integers �Rï .
In this case,the LP relaxationlets ��ï be a real lying in ® �©���Rï`¯ .) The current-bestapproximationboundfor
generalPIPs,dueto [42], is asfollows: in deterministicpolynomial-time,we canoutputa solutionof value
Ìm�UÙÚÒÛv '� n �+��� ç � n À2� % Ðgv � vqÐ Î vIÅ % Ï 4R� , where� ç J~�U�©�'ª+� is anabsoluteconstant.(If ���Vª , thenasolutionof
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value Ìr�C�on0À2�@� canbeoutput.)Oneproblemwith this resultis that it becomesratherweakas � approaches
ª from above. We improve this resultof [42] for therange�±J¿�.ª-�5Ík� , in Theorem8.1. (Think of � asone
plusa “small” constantsuchas �©/Òª .)
Theorem 8.1 Givena general packing integer programwith �NJO�.ª-�5Ík� , wecanin polynomialtimeoutputa
solutionof value Ìr�)�U�e³pª+�7� n ¾+Ù¤ÚÒÛ� '� n �)�g4RÀ2�@� .
Proof. We multiply eachrow W of the linear system“ LÂ��½ 	

” by �À 	 6 , so that all entriesin the vector
	

become� ; theentriesof L still lie in ® �©�'ª�¯ . Wefollow theapproachof [42]; theonly differenceis thatwenow
employ Theorem5.5insteadof directlypluggingin theChernoff-Hoeffding bounds.Solve theLP relaxation;
let � nï bethevaluefor �©ï in theLP’s computedoptimalsolution.Let p��«����lá��À©�U��³pª+�)��¾+ÙsQ<S� '�@À2� n �'ªR4 ,
where� l �pÍ is asufficiently largeconstant.Independentlyfor eachð , weset ñrïÂ���n�Inï ÀepM� with probability� � nï ÀepM�I³¤� nï Àep ; weset ñrï�� � � nï Àep?� with probability ªZ³g� � � nï Àep?�w³¶� nï Àep[� . This is our rounding;wewish to
show that if � l is largeenough,thenwe cansatisfyall theconstraintsandhave theobjective functionvalue
beingat least� n À©�$Í*p[� .

Define ù*ï�� ñrï�³��n� nï Àep?� ; note that ù*ï=JN +�©�'ªR4 . For each W�JÜ® �§¯ , let #'6� � ï LÂ6n� ïM�n� nï ÀepM� , and	 l6 � �±³;#+6 . Finally, let ��n� � � ï �.ï?�n�?nï Àep?� . If ��n� � ��n0À©�$Í*p[� , roundingdown each �Inï Àep will give
us a feasibleintegral solution of value at least � n À©�$Í*pq� . So we assumethat � n� Ø � n À©�$Í*pq� . It suffices
to avoid the following ��âeª events: (a) events � % ��� , �0/0/0/+��� Þ , where �z67Ac�)�UL�ù"�76rÈ 	 l6 � , and(b) event
� Þ ) % AM�U�J�m¾$ùØ��C�on'À©�$Í*pq�T³���n� �)� . Considerany W¢JO® �§¯ ; notethat B[6 /� E ®á�ULÂù"�76C¯w½p��Àep�³#'6 . If #+6Z�j�Àep ,
event �z6 cannothappen;soassume#+6�Øp�Àep . Now, �A60AM�)�UL�ù"�76tÈj�e³~#'6�� . Recallthat p¨�jÍ-�À©�U��³pª+� ,
andthat #+6¢Ø��Àep . Thus, ��³Ë#+6×È|��³��U�M³jª+�)À-Í¤�N�U�;â;ª+�)À-ÍKÈ�ª . We now applyTheorem5.5 to the
event �)�ULÂù�� 6 È=�;³h# 6 � ; in thenotationof Theorem5.5,wemaytake ª+À�P§���Àep�³¨# 6 , and Ç×����³¨# 6 ³¥ª .
By Theorem5.5,wehaveawell-behavedestimator�-6 for theevent �z6 , with E ® �-6C¯Z½;�$� , â�ÙRQ<Sv 2Í��5Ç Å % 4R�)À�P , .
Givenourvaluesof Ç and P andthefactthat �ÝÈp��ÀepmâËª , it is easyto checkthatin therange#+6IJ~® �©����Àepq� ,
thisboundon E ® �-6n¯ is maximizedwhen #+6[��� . Thus,

£�W×JO® �§¯�� E ® �R6n¯w½;�U�Àep[� , ¾��$� , âËÙRQ<Sv 2Í��+�U�M³¥ª+� Å % 4R�*/ (12)

We next considertheobjective function. Note that B Þ ) % /� E ® � � ¾-ù-¯t�V� n Àep�³O� n� , anddefine D Þ ) % J
�U�©�'ª+� by B Þ ) % �.ªz³�D Þ ) % �t���on'À©�$Í*pq��³¨��n� ; we have � Þ ) % A��U�J��¾+ù�ØCB Þ ) % �.ªÂ³OD Þ ) % �)� . By (3), thereis
awell-behavedestimator

�-Þ ) % /���.ªA³OD�Þ ) %�� � �� Å � � Ð Î ,�t Ï ¾ =
ï
�.ªz³OD�Þ ) %�� ���5ú��

for � Þ ) % , with E ® � Þ ) % ¯Z½=aË�'B Þ ) % �JD Þ ) % � . SinceB Þ ) % ��� n Àep�³g� n� , simplecalculations(e.g.,from [42])
show that in the range �on� J�® �©�)��n+À©�$Í*p[�)� , aË�'B Þ ) % �JD Þ ) % � is maximizedwhen ��n� �Ü� . Thus,E ® � Þ ) % ¯>½
� Å � � Ð Î}| t Ï . Usingthis boundonE ® � Þ ) % ¯ alongwith (12),we seefrom Theorem5.2thatit sufficesto have

�.ªz³¨Ù¤ÚÒÛv "�U�Àep[� , ¾T�$� , âËÙRQ<Sv 2Í��+�U��³=ª+� Å % 4R�*�'ªR4R� Þ Èp� Å � � Ð Î�| t Ï / (13)

Recall that �ëJV�.ª-�5Ík� . The recipeof Remark7.1 shows that pj�¸����lá�À©�U�«³;ª+�)�¢¾TÙRQ<Sv '�@À2� n �'ªR4 for a
sufficiently largeconstant� l �pÍ , satisfies(13).

8.2 I-version: maximizing total weightedflow

We now presenta moresophisticateduseof the ideasof Section7. The main new point herewill be that
randomizedroundingitself maybeinsufficient, in contrastwith thepreviously seenalgorithms.Wewill have
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to do a final “cleanup” phasewhich can reducethe objective function; we will ensure,however, that this
reductionis notmuch.

WeconsidertheI-versiondefinedin Section2; thesettingis somewhatsimilar to thatof Section7. Weare
givenadigraph;����������� anddisjointsubsetsf and � of � . Eachedge�CQZ�)B©�zJK� hasacapacity�-�&� �rÈp� ;
each(\J~� hasa demand�T�zÈ|� anda weight E��zÈ;� . By scaling,we assumethat theweightslie in ® �©�'ª�¯ .
Let {µ�§{}�VX and { ��{��V� asbefore.Informally, themainnew constraintis that theflows constructedmust
be integral; theobjective is to maximizethetotal weightedflow. More formally, recallingthediscussionsof
Sections7 and7.1, our problemis the following ILP. Let �ê�ê '( % �)( , �0/0/0/'�)(.1k4 . The ILP is to constructY
non-negative flows ] Î % Ï �5] Î , Ï �0/0/0/�] Î 1 Ï on  suchthat:

(D1) in each] Î 6 Ï , flow-conservation is satisfiedat all nodesin �e³���fgdg '( 6 4R� , and ( 6 is theonly nodethat
canhave apositive in-flow;

(D2) thetotal flow onany edge�CQw�)B©� is atmost �-�&� � , i.e., � 6C ji 1.k ] Î 6 Ï�&� � ½=�-�&� � ;
(D3) £�W5��] Î 6 Ï6 ì �C(76�� ½=�T6 ; and

(D4) £��CW5�)QZ�)B©� , ] Î 6 Ï�&� � is anon-negative integer.

For eachW JË®µY"¯ , define� 6 �;] Î 6 Ï6 ì �C( 6 �)ÀR� 6 ; notethat � 6 JË® �©�'ª�¯ . Theobjective is to maximize � 6C li 1Jk E 6 � 6 . By

(D4), � 6C ji 1.k ] Î 6 Ï�&� � mustbeanintegerfor all �CQZ�)B©� ; thus,we mayreplace� �&� � by �C� �&� � � , without changingthe
problem.Similarly, we mayreplace�k6 by �C�T6'� for all W . Sowe assumehenceforththatall thecapacitiesand
demandsarepositive integers.(Zero-capacityedgesandzero-demandelementsof � canberemoved.)

LP relaxation and randomized rounding. The LP relaxation(LP2) that we consider, removes the con-
straints(D4) andlets thevariables] Î 6 Ï�&� � benon-negative reals. Letting ��n denotetheLP optimum,we show
how to roundthisLP to getanintegral solutionof value Ìm�C� n ¾+Ù¤ÚÒÛ� '� n �)�g4RÀ2�@� .

Let � n6 denotethe valueof ��6 in (LP2)’s computedoptimal solution; thus, � n �¸� 6 E�6n� n6 . As in Sec-
tion 7.1, we conductflow-decompositionon the LP solution. For each (36�J � , this yields flow-paths
¼Z6C� % ��¼w6n� , �0/0/0/+��¼Z6}� d , whereeach ¼Z6C� ï originatesfrom some #'6C� ïpJÝf and carriesa flow of value ù n6C� ï �÷� ;
we have � ï ù�n6C� ï �·�k6U�?n6 . Note also that for all �CQw�)B©��J!� , � Î 6n� ï Ï W Î �k� � Ï  9h�d"~ � ù�n6n� ï ½ �-�&� � . Furthermore,
from property(B0) of Section7, we canensurethat � 6 ½«� for each W . Let ù&l6C� ï �Êù n6C� ï ³��Cù n6C� ï � . We fur-
ther decomposethe above flow into its “integral part”  ?�Cù n6n� ï �¨o�W¤JM®µY"¯��8ðjJ�® �`6Ñ¯$4 andits “fractional part”
 +ù l6C� ï oqW�J|®µY"¯��8ð�J;® ��6C¯$4 . We install the integral part, andupdateeachedge �CQw�)B©� ’s capacityto its residual
capacity ��l�&� � �!� �&� � ³p� Î 6C� ï Ï W Î �&� � Ï  <h�d"~ � �Cù n6C� ï � . For each( 6 J¿� , let �Tl6 �!� 6 ³p� ï �Cù n6C� ï � . We now focuson
roundingthe fractionalpart. It is easyto checkthat all the ��l�&� � and �kl6 arenon-negative integers. For the
rounding,we canignoreall W suchthat � l6 �e� , andall �CQw�)B©� such � l�&� � �V� ; thuswe assumehenceforththat
all the �Tl6 and �*l�k� � arepositive integers.

Our randomizedroundingis to choosea parameterpOÈeª , andindependentlyfor all pairs �CW��8ð�� , to round
theflow onpath¼ 6C� ï to: (i) ª with probability ù&l6n� ï Àep , andto: (ii) � with probability ª"³\ù&l6C� ï Àep . Let Á 6C� ï Jg +�©�'ªR4
denotetheresultantrandominteger. Weneedoneextrastep;notefrom (D3) thatwerequire � ï Á�6n� ïr½=�kl6 for
each(76¢Jh� . For eachW suchthat � ï Á�6C� ï�Èj� l6 , we deleteintegral amountsof flow in anarbitraryway from

thepaths +¼w6C� ï>o+ð¶JO® �`6n¯$4 , sothatwe have ] Î 6 Ï6 ì �C(76������Tl6 .
Analysis of the rounding. Define �on� � � 6 E�6�� � ï �Cù�n6C� ï �2�)ÀR�T6 , and ��n% � � 6 E�6.� � ï ù l6n� ï �)ÀR�k6 . Note that
� n �÷� n� â�� n% . The integral part of the flow that we install, contributes � n� to the objective function; the
roundingcontributes � 6 E�6�� � ï Á�6C� ï2�)ÀR�k6 minusthe (weighted)amountof flow deleted.We will show how
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to make theroundingcontributea netamountof Ìm�C�on% ¾RÙÚÒÛv '��n% �)�g4RÀ2�@� . A simplecaseanalysisshows that
� n� â�Ìm�C� n% ¾kÙÚÒÛv '� n% �)�g4RÀ2�@��!Ìm�C� n ¾kÙ¤ÚÒÛ� '� n �)�g4RÀ2�@� . Thus,it will suffice for us to make the rounding
contribute Ìm�C� n% ¾3ÙÚÑÛv '� n% �)�g4RÀ2�@� ; this is whatwefocusonfrom now on. Henceforth,we ignoretheinstalled
integral flow, andonly focuson the rounding: by “objective function”, we will thusonly meanthe part of
the final objective function that is contributed by the rounding. Let � ) denote ÙsQ<S� +������4 . Define G¬�
� 6 � ï E�6$Á�6C� ï+ÀR�k6 ; for each W�JN®µY"¯ , let H}6��cE�6)�)� � ï Á�6C� ï+�A³j� l6 � ) ÀR�T6 . It is easyto seethat the objective
functionvalueis G@³ � 6C li 1Jk H 6 .

To lower-bound G~³ � 6C li 1Jk H}6 , we aim to suitablylower-bound G andupper-bound � 6n li 1.k H}6 . We also
needto ensurethatnoedge’scapacityis violated:sinceall the � l�&� � and Á�6C� ï areintegers,edge�CQZ�)B�� ’scapacity
is exceededonly if � Î 6C� ï Ï W Î �&� � Ï  <h�d"~ � Á 6C� ï ����l�&� � â|ª . Thus,in orderto show that theobjective functionvalue
is at least,say, � n% À©�Cí9p[� , it will suffice to simultaneouslyavoid thefollowing �«â¥Í “bad” events:
(a) Event �;�k� � , for edge�CQw�)B©� : “ � Î 6C� ï Ï W Î �&� � Ï  <h�d>~ � Á�6C� ïm�p� l�k� � â�ª ”. Wehave � suchevents.
(b) Event �ml : “ � 6n li 1.k H}6��Ë� n% À©�Cí9p[� ”.
(c) Event � l l : “ G�½¥�on% À©�$Í*pq� ”.

Theunderlyingindependentbinary randomvariablesin thesenseof Theorem5.2, arenow  RÁ 6C� ï oKWFJ
®µY"¯��8ð¶J~® ��6n¯$4 . Also, thefirst ��â¥ª eventsaboveareincreasing,while thelastevent �ml l is decreasing.Wewill
constructsuitablewell-behavedestimatorsfor our �|â�Í badevents.Notethat G is asumof independentr.v.s
E�6�Á�6C� ï+ÀR�k6 , eachlying in ® �©�'ª�¯ ; also,E ®µGq¯Z�;� n% Àep . Thus,asin theproof of Theorem7.2, �Tl l_�eÍ � �Ã

Ð Î ,�t Ï$Åy� �
Í � �Ã
Ð Î ,�t Ï ¾  6C� ï Í Å �yd' �d>~ � Ð8¡ d is awell-behavedestimatorfor � l l ; bound(3) shows that

E ® � l l ¯Z½p� Å � �Ã
Ð Î�| t Ï / (14)

Theevents�;�&� � arealsosimpleto handle.Fix �CQw�)B©� JK� ; wehave E ® � Î 6C� ï Ï W Î �&� � Ï  <h�d>~ � Á�6C� ï�¯Z½p� l�k� � Àep . So
by (2), thereis awell-behavedestimator

� �&� � A�® p��.ª×â�ª+ÀR� �&� � �8¯ Å � ° + ~ � Å % ¾ =
Î 6n� ï Ï W Î �&� � Ï  <h�d>~ �

® p��.ª×â�ª+ÀR� �&� � �8¯  �d>~ �

for �;�&� � , with E ® �<�&� �'¯\½±� � � ° + ~ �t Î � ° + ~ � ) % Ï �
� ° + ~ � ) % . If we ensurethat p|�NÍ&� , thenthis boundis maximizedwhen

� l�k� � �Vª (recallthat � l�&� � is apositive integer).Thus,

E ® �9�&� �0¯w½��$�2À©�$Í*p[�)� , � if p¨�pÍ&�&/ (15)

Theevent � l needsa little morework:

Lemma 8.2 Supposep~��Í&� . Thenthere is an explicit well-behavedestimator� l for theevent � l , such that
E ® �Tl ¯w½pÍ&� , Àep .

Proof. It is immediatethat �Cí9p[À2� n% �z¾ E ® � 6C ji 1.k H}6n¯ is a well-behaved estimatorfor �ml . We next express
E ® � 6C li 1Jk H}6C¯ in a moretractableform. Fix any W>Jj®µY"¯ , andrecall that thenumber�`6 of flow-paths¼w6n� ï is at
most � . Thus, � ï Á 6C� ï canbeatmost � . Wehave

E ® H}6C¯_� E ® E�6)�)� @
ï
Á�6C� ï2�I³h� l6 � ) ÀR�T6n¯v�

@
�) li Þ k

E�6
� 6 ¾e���+�

@
ï
Á�6C� ï>�=� l6 â¥#-� L (16)

this now leadsus to a well-behaved estimatorfor E ® � 6C ji 1.k H}6Ñ¯ . Define �Dl6 �ô� � ï ùkl6C� ï �)ÀR�kl6 , and note that
� l6 JO® �©�'ª�¯ . Wehave E ® � ï Á�6C� ï�¯[��� l6 � l6 Àep . Considerany #F�|ª . By (2), thereis awell-behavedestimator

� l6C� � A�® p��U� l6 â¥#-�)À©�U� l6 � l6 �8¯ Åy¡ ° d Å � ¾
=
ï' ji � d k

® p��U� l6 â=#R�)À©�U� l6 � l6 �8¯  jd"~ �
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for theevent“ � ï Á�6C� ï>�=� l6 â¥# ”, with

E ® � l6C� � ¯w½;� �0��l6 �Tl6
p��U� l6 â¥#-� �

¡ ° d )[� /

Weget

@
�� ji Þ k

E ® � l6C� � ¯Z½
@
�g¢ %
� �0��l6 �Tl6
p��U� l6 â�ª+� �

¡ ° d )[� ½pÍ�� �'�Dl6 �kl6
p��U� l6 â�ª+� �

¡ ° d ) % ½;�$�'� l6 Àep[� , À-Í L

thelasttwo inequalitiesfollow from thefactthat that pO��Í&� . So,by (16),we have anexplicit well-behaved
estimator�Tl /���Cí9pqÀ2� n% �I¾ � 6C ji 1.k � �� ji Þ k E�6%�Tl6C� � ÀR�k6 for theevent �ml , with

E ® � l ¯w½��Cí9p[À2� n% �I¾T®
@
6C ji 1.k

E 6
�k6 �$�'� l6 Àep[�

, À-Í2¯I½ Í&� ,
p�� n% ¾

@
6C ji 1.k

E�6)�C� l6 � , / (17)

Finally, to upper-boundthelasttermof (17),recallthat � n% �|� 6C li 1Jk E�6U�Dl6 , with all the �Dl6 lying in ® �©�'ª�¯ . Thus,
thelasttermin (17) is at most Í&� , Àep .

Now thatwehave (14),(15)andLemma8.2,Theorem5.2shows thatit sufficesfor usto take pg�¿Í&� and
ensurethat

�.ªz³¨Ù¤ÚÒÛv 2Í&� , ÀepI�'ªR4R��¾"�.ªA³=�$�2À©�$Í*p[�)� , � Þ È¿� Å � �Ã
Ð Î}| t Ï

holds.RecallingRemark7.1,wecancheckthattheserequirementshold if pK�b�«¾*ÙRQ<S� '�@À2��n% �'ªR4 , where�
is asufficiently largeabsoluteconstant.Thiscompletesouranalysis.

Theorem 8.3 For themulti-source, multi-sinkI-versionwhere wewish to maximizethe total weightedflow,
wecandelivera solutionof value Ìm�C�on¢¾'Ù¤ÚÒÛv '�on2�)�g4RÀ2�@� in polynomialtime.

Finally, a hardnessresultof [21] shows (evenfor thecasewhereall thecapacities,demands,andweights
lie in  +�©�'ªR4 ) that for any fixed Ç´È!� , approximatingthis problemto within � % Ð , ÅDÆ on directedgraphsis
NP-hard.Thus,Theorem8.3 is essentiallybest-possible.

9 Discussionand Concluding Remarks

How do theresultspresentedhererelateto theoriginal policy questionswe startedinvestigating?Theposi-
tive andnegative resultsarea steptowardproviding policy-makersa quantitative andmathematicalbasisfor
establishingpolicies.In particular, many of theproblemsconsideredhavenotbeenstudiedin thepowerengi-
neeringcommunityuntil recently. Thisis largelydueto thefacttheseproblemswerepreviouslynotpractically
relevantdueto theregulatedstructureof the industry. Our intractability resultsdemonstratethehardnessof
the problemsfor extremelysimplenetworks. Our resultsalsoshow that the underlyingnetwork aswell as
thespatialdistribution of sourcesandsinksplayanimportantrole in contractsatisfactionproblemsarisingin
deregulatedenvironments.For instance,in theregimeof regulatedmarkets,theUnit CommitmentandEco-
nomic Dispatchproblemscould be solved optimally by individual companies.In contrast,in a deregulated
market, implementationof policiesby theISOseekingto effectively usethenetwork capacityundercontrac-
tual constraintsmight becomputationallyintractable.An exampleof this is finding themaximumnumberof
satisfiablecontracts:theequivalentcombinatorialproblembeing(0/1-VERSION, MAX-#CONTRACTS). Our
researchalsoallowedusto formulateanumberof variantsof theproblemsoriginally suggested.Someof the
variantsappearto be interestingfrom a computationalstandpoint.We expectthatsomeof theseandfurther
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variantswill appealto practitionersasreasonablemodelsof theactualproblems.We have shown thatsome
of thesevariantshave polynomial-timeapproximationalgorithmswith worst-caseperformanceguarantees.
In [13, 14], we have begun an experimentalevaluationof the algorithmspresentedhereon realisticpower
networks. Thegoal is to measuretheeffectivenessof heuristicsfor variouscontractscenarioson a realistic
power network. To testthealgorithmsin a realisticsetting,we areworkingwith anaggregatedversionof the
ColoradoPowerNetwork. Thecontractscenariosaregeneratedto capturevariousintuitively plausible“what
if ” scenarios,suchasparticularproducersproviding extremelycheappower, suddenincreasein demand,etc.

An obviousopenquestionis to try to improve theperformanceboundsfor theproblemsconsidered.The
mostimportantproblemin thiscontext is to settletheapproximabilityof theMULTI-SOURCE-(0/1-VERSION,
MAX-FEASIBLE FLOW) problem.To seewhy any directextensionof randomizedroundingbasedtechniques
might not work, let us go back to Example2 given in Section3. As discussedthere,the sourceand the
destinationof acontractmightnot lie in thesameconnectedcomponentof thenetwork obtainedby puttingin
all arcscarryingpositive flow. This is truenot only of thelinearprogrammingrelaxationwe have given,but
evenfor anoptimalsolutionstrategy. New approachesto tackletheseissueswill beof muchinterest.

We have begun a multi-yearprogramto develop a comprehensive anddetailedsimulationto studythe
effects of deregulation of the electricalpower industry. The goal is to include the entireNorth American
continentandperformthesimulationat a very high level of fidelity; in particularto includeeach significant
elementof thetransmissionsystemincludinggenerators,transmissionelements,variedcontrolelementsand
load distribution buses.The plannedsystemis a hierarchicalmulti-resolutionsimulationhierarchy. A dis-
tinguishingfeatureof this systemis an associatedmarket model that will representthe customers,system
operatorsandindividual companies.The market model is coupledto a physicalmodelof the power grid.
More detailson theprojectwill beavailable(see[12, 24] for apreliminarydescriptionon thesubject).
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of the Power Simulationprojectat Los AlamosNationalLaboratory:Darrell Morgensen,Dale Henderson,
JonathanDowell, Martin Drozda,VerneLoose,Achla MaratheDoug Roberts,GeraldSheble(Iowa State
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Appendix: Proof of Theorem 5.5
Let f % �� 'W¢J~® �*¯qo\S'6��|ª+À-Í"4 and f , �e 'W¢JO® ��¯Zo\S'6IØ;ª+À-Í"4 ; define ó % �|� 6C 9[ Ã

ñ�6 and ó , �|� 6C 9[ Ä S'6nñ�6 .
Also let S l6 ��ÍRS+6 for eachW¢J@f , andlet ó l, � � 6C 9[ Ä S l6 ñ�6 . Weclaim that

� /�¤P z °Ä Å , âËó % ó , À-Ç�â @
6C� ï0 �[

Ã
W�6'¥"ï

ñ�6Cñrï

is awell-behavedestimatorasrequired,for theevent �^A���Áe�|�.ª�âOÇ��)� . RecallingRemark5.3,it sufficesto
considerthespecialcaseof Q´��� , in thedefinitionsof (P1)–(P3).

To see(P1),notethatE ® �T¯¢�¦P Å , �  6C 9[ Ä E ®§P 6 °d>¨ d ¯C��â¿Ç Å % E ® ó % ¯ E ® ó , ¯�â�� 6C� ï' 9[
Ã
W�6'¥"ï E ® ñ�6Uñrï`¯ , which is

efficiently computable.Similarly, property(P3)is easyto check.
We now show (P2). Suppose� holds. Then,if óZ%��e� , we musthave óv,���ª¢â¿Ç , andhencemusthave

ó , �|ª ; similarly, if ó % �Vª , theevent ó , �|ª shouldhold. Thus,

�&�+�'�I�x½ �&�+�Uó % ���T�I¾{���2�Uó , �|ª+�qâE���+�Uó % �Vª+�I¾{���R�Uó , �=Ç��qâK���+�Uó % �pÍk�
½ �&�+�Uó , �;ª+�qâ E ® ó % ¯}¾ E ® ó , ¯CÀ-Ç�âK�&�+�Uó % �pÍk� (Markov’s inequality)

� �&�+�Uó l, �pÍk�Zâ E ® ó % ¯}¾ E ® ó , ¯CÀ-Ç�âK���+�Uó % �pÍk�
½ E ®§P z °Ä Å , ¯�â E ® ó % ¯D¾ E ® ó , ¯CÀ-Ç�âK�&�+�Uó % �pÍk� (by (2))

½ E ®§P z °Ä Å , ¯�â E ® ó % ¯D¾ E ® ó , ¯CÀ-Ç�â @
6C� ï' 9[

Ã
W�6'¥"ï

���R�Cñ�6q��ñrïÂ�Vª+�*/ (18)

This proves(P2).
Finally, let usseethat (18) canbeboundedby �$� , â=ÙRQ<Sv 2Í��5Ç Å % 4R�)À�P , . From(2), we have E ®§P z °Ä Å , ¯ ½

��$ÍkÀ�P[�.P´³=ª+� ½;�$�RÀ�P�� , . Also, sinceE ® ó % ¯[� � 6C 9[
Ã
���2�Cñ�6Z�Vª+� , it is nothardto checkthat

@
6C� ï' 9[

Ã
W�6%¥"ï ���+�Cñ

6 �Vª+��¾e���+�Cñ ï �Vª+� ½;� E ® óq%.¯C� , À-Í�/

Thus,weneedonly show that

E ® ó % ¯}¾ E ® ó , ¯CÀ-Çwâ�� E ® ó % ¯C� , À-Í�½=ÙsQ<S� 2Í��5Ç Å % 4RÀ�P , � (19)

which we do now. Let E ® Á�¯I���@È|� , E ® ó % ¯��e���|� , andE ® ó , ¯I�e���;� . We clearlyhave theconstraints
�_À-Í>âp�g½e�¨½|�¶âp� . Note in particularthat �g½e�³~�_À-Í . Thus,the left-handsideof (19) is at mostthe
maximumvalueof thefunction ]��C�_����Ç Å % �I�U�I³>�_À-Ík�0â�� , À-Í , subjectto theconstraintthat ��½¥�g½pÍ-� . Note
that ] l �C�[�×�eÇ Å % �U�>â¥�I�$Ç¢³pª+�)� . If Ç\�Vª+À-Í , ] l �C�_�Â��� for �§½¿�h½�Í-� ; thus,themaximumof ] is attained
when �´��Í-� . Hence,]��C�_� ½¿Í-� , . Next, if ÇAØ|ª+À-Í , ] attainsits maximumwhen �§�j� n ���©À©�.ª�³KÇ�� . Thus,
]��C�_�Â½|]��C� n � �e� , À©�$Í&Ç2�.ª�³�Ç*�)��½�Ç Å % � , here.So,thel.h.s.of (19) is at most � , ¾2ÙRQ<Sv 2Í��5Ç Å % 4 . Recalling
that �§½|ª+À�P completestheproof.
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